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ABSTRACT- A CT imaging system has been used to develop a 
finite element (FE) model of the child-specific mandible. 
Correspondingly, a procedure to generate FE models from digital 
image data has also been developed. The geometric models are 
extracted from the CT scan data of children using ANALYZE 
AVW version 3.0, and then reviewed, edited and meshed using 
the preprocessor of DEFORM 3D version 6.0. By utilizing 
simplified material model and boundary conditions, detailed 
convergence tests were carried out using ABAQUS/STANDARD 
version 6.1. Test results show that over 52,592 linear tetrahedral 
elements or 37,062 degrees of freedom (DOF) are needed to 
model a child-specific mandible with reasonable accuracy. 
Results of the test series indicate that the surgical planning 
system is appropriate for further clinical implementation. 
Key Words- Medical Imaging, Finite Element Model, 
Mandible, Craniofacial Deformity, Biomechanics 
 

I. INTRODUCTION 
 

Numerical simulation can provide clinically useful 
information to the surgeon who must reconstruct pediatric 
craniofacial deformity. Such simulations should be done 
with clinically acceptable accuracy and in a reasonably 
short period of time. It is essential that finite element (FE) 
models be established from the non-destructive method 
based CT and/or MRI data of the patient [1, 2]. Current 
computer assisted craniofacial surgery planning systems 
are limited to anatomic restoration without regard to 
function [3]. Incorporation of finite element (FE) analysis 
as an integral component to simulate the stomatognathic 
function can complement and refine computer-assisted 
surgical planning.  

While extensive studies on FE modeling of the human 
mandible have been carried out [1, 2, 4-7], these studies 
have largely focused on structural analysis of facial 
fractures in adults. Reconstructing a pediatric craniofacial 
deformity is fundamentally different. It involves 
repositioning the various elements of the craniofacial 
skeleton from an abnormal spatial relationship to restore 
the normal anatomic boundaries and function. In addition, 
the skeletal geometry and material properties in children 
differ from those of adults. This further warrants 
development of patient-specific FE models.  

A critical step in the FE modeling process is the 
generation of the geometrical model of bony components. 
Compared to mechanical or fabricated parts, the geometric 
shape of the biomedical components is frequently complex 
and non-linear, especially the craniofacial complex, 
including mandible and maxilla. In such cases, it is 
difficult to describe the surface contour by a simple linear 
analytical model. In particular, the topology with multiple 
inner cavities and closed surfaces remains beyond the 
current capability of most commercially available CAD 
and FE codes. It remains a challenge for FE models to 
offer reasonable accuracy within a short period of time. 

Since the accuracy of the finite element method can only 
be objectively established with a convergence test [1], the 
element size and the degree of freedom (DOF) must be 
determined on the basis of the convergence test results. 

The objective of this study is to establish the 
methodology for routine development of child-specific 
mandibular models directly from medical imaging data. A 
convergence test is performed to specify mesh refinement 
needs and to estimate error.  

 

II. METHODOLOGY 
 

CT data was obtained from a helical scan using a GE 
Advanced CT scanner with a pixel matrix size of 512×512. 
The slice dimension (1.5 mm thickness) is determined by 
the standard of clinical practice. Using ANALYZE AVW 
3.0 (Biomedical Imaging Resource, Mayo Foundation, 
Rochester, Minnesota), the data were reformatted and the 
voxels resized using trilinear interpolation, from 
0.430×0.430×1.5 mm to 0.75×0.75×0.75 mm; the 
unassigned 16-bit file was converted to an unassigned 8-bit 
file. This procedure reduced the memory required for each 
file, from more than 200MB to 20 ~ 25 MB. Such data 
reduction does not markedly influence the quality of the 3-
D images produced according to Lo et al. [3]. Under the 
volume render mode, hard tissue was separated from soft 
tissue by choosing a proper threshold value based on the 
tissue density. Skull and mandible were separated using 
the object separation technique. The adapt/deform method, 
one of the tile techniques, was used to generate the surface 
model. 
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The .STL files of the mandible thus generated were then 
input into the preprocessor of DEFORM 3D (Scientific 
Forming Technologies Corporation, Columbus, Ohio). 
After editing any geometrical errors, a series of meshes 
with various numbers of nodes and elements were 
generated, primarily using the tetrahedral element with a 
nominal aspect ratio of 2. 

The procedure for generating the geometrical model is 
shown in Figure 1. In this procedure, geometrical model 
editing, that is, the solid model repairing, cleaning and 
smoothing, is critical in evaluating the non-linear geometry 
of the mandible. Geometrical model repairing refers to the 
elimination of the geometrical discontinuities; while 
cleaning refers to the removal of inner cavities and closed 
surfaces. Otherwise, meshing may not be successful. 
Surface smoothing reduces the minor geometrical 
distortion during digitizing. In this study, geometrical 
model editing was carried out manually and surface 
smoothing was limited to obviously distorted points. Our 
geometrical model editing will likely benefit from 
continuing efforts to develop automated techniques. 

The .KEY files generated by DEFORM 3D were 
rewritten as .INP files (ABAQUS/STANDARD code). 
Boundary conditions consisted of a simplified muscle 
force matrix, as shown in Figure 2. All degrees of freedom 
(DOF) for the 6 nodes at each condyle process were 
constrained to simulate the temporomandibular joint 
(TMJ) reactions normal to the articular eminence and to 
prohibit rigid-body motion of the mandible [1, 5]. A load 
of 100 N was applied at the center of the incisors in a 
direction perpendicular to the occlusal plane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Procedure for generating geometrical models and meshing. 
 

A simplified material model was postulated. Thus, the 
entire mandible was assumed to be homogeneous, 
isotropic, and linear elastic, with Young’s modulus of 13.7 
kN/mm2, or 13.7 GPa, and Poisson’s ratio of 0.3 [6]. 

In order to estimate the error in the solution when a 4-
node linear tetrahedral element was employed, a series of 
FE analyses were carried out using 
ABAQUS/STANDARD 6.1 (Hibbitt, Karlsson & Sorensen 
Inc., Providence, Rhode Island). The only difference in the 
various analyses was the mesh density of the FE models. 
Some typical parameters including the maximum and 
minimum principle stresses, Von Mises stress, 
displacements, U1, U2 and U3, referenced to the global 
coordinate system, and magnitude of the total 
displacement, U, were checked at selected points. The 
points selected to check stresses were at the posterior 
border of the ramus, the sigmoid arch and the mandibular 
body. Points selected to check the displacement were those 
at the angle, the coronoid process, the first molar and the 
bottom of the chin, as shown in Figure 2. 

 

III. RESULTS 
 
The number of nodes and elements employed in each 

analysis along with a portion of the study results are listed 
in Table I. The variation of the maximum principle stress 
in the mandible is shown in Figure 2.  

The Von Mises stress and maximum and minimum 
principle stresses at the checked points do not significantly 
change with an increase in the number of elements within 
the range employed for the current study.  

On the other hand, the variation of displacements with 
the number of elements yields the typical response curve 
representing a bent ‘knee’ in the graphical output [8]. At 
that point, the number of elements is close to 52,592, as 
shown in Figure 3. The size of the elements corresponding 
to the element number of 52,592 was about 1.2 mm, while 
there were 37,062 DOF. This is close but somewhat larger 
than the 30,000 DOF concluded by Hart et al. [1]. It is a 
reasonable result as the 20-node hexahedral element was 
employed as the principal element in their study while the 
4-node tetrahedral element was used in the current study. 
 

IV. DISCUSSION 
 

The accuracy of the generated geometric model of the 
mandibular element of the craniofacial skeleton was 
evaluated while considering following points:  

(1) The subjects in this study are actual patients rather 
than cadaveric dry specimens [4, 6] or wet specimens [1, 
7] as used in some studies.  
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Figure 2.  A plot of distribution of the maximum principle stress with 67,190 elements, boundary conditions and loading, 
and selected points.  

 
TABLE I 

CONDITIONS AND RESULTS OF THE CONVERGENCE TEST 
 

Von Mises Stress at 
Mandible Body 

Maximum Principle Stress at 
Mandible Body Number of 

Nodes 
Number of 
Elements 

Number of  
Degrees of Freedom (DOF) 

MPa MPa 

1050 3562 4150 0.418 0.156 

3303 12756 9909 0.470 0.239 

5233 20926 15699 0.492 0.274 

7194 29350 21582 0.487 0.264 

9439 39470 28317 0.489 0.285 

12354 52592 37062 0.510 0.297 

15590 67190 46770 0.486 0.284 

19064 82632 57192 0.507 0.295 

21813 95209 65439 0.509 0.297 
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Figure 3. Global coordinate displacements at right first molar 
(point b) as a function of the number of linear tetrahedral 
elements. 
 
 
(2) Generally, the smaller the slice thickness of the CT 

scan, the more accurate the geometric model. In this study, 
the slice thickness was 1.5 mm, which was less than 2 mm 
[4], 3 mm [1] and 10 mm [6] thickness reported in the 
literature. (Further reduction of the slice thickness of the 
CT scan to 1 mm is limited due to prolonged CT scan time 
introducing motion artifact and an increased risk to 
radiation exposure to the child.) 

(3) The surface model was manually repaired and 
cleaned of extraneous errors by making use of the graphic 
interface followed by a smoothing of the topography. This 
allowed both operator evaluation and advanced graphic 
tools and representations. However, the overall process 
remains time and labor intensive. Approximately 72 hours 
is needed to model the mandible alone. It is expected the 
ongoing code development will reduce future working 
time. The objective of our imaging laboratory is to develop 
a clinically applicable FE model of the craniofacial 
skeleton relevant to the practicing surgeon within an 
acceptable pre-surgical planning time frame. 

 

V. CONCLUSION 
 

A procedure to rapidly generate patient-specific FE 
models from CT scan data was developed and a FE model 
of the child-specific mandible is evaluated. Convergence 
testing indicated that over 52,592 four-node tetrahedral 

elements are needed to obtain an accurate child-specific 
mandibular model. 
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